Wednesday, January 19, 2011

Day 6 Activity 1 1/19/11 Ideal Gas Law

What is the tire pressure at -20°F compared to 90°F, assuming the starting pressure was 32 psi?

Ideal Gas Law notes:
PV=nRT

P: Pressure
V: Volume
n: Moles of Gas
T: Temperature
R: Gas Constant

PV/nT = nRT/nT

P1 V1/ n1 T1 = P2 V2/ n2 T2

1 comment:

  1. 1. First I used a conversion calculator at http://www.infoplease.com/pages/unitconversion.html?qty=-20&fromopts=tempF&toopts=tempK&unittype=temperature&grp=&convert.x=40&convert.y=8

    But I found the equations to solve for converting Fahrenheit, Celsius, and Kalvins.

    Formulas:
    Fahrenheit to Kalvins (F-32) * 5/9 + 273.15
    Celsis to Fahrenheit (C*9/5) + 32
    Kalvins to Fahrenheit (K-273.15) * 9/5 + 32
    Kalvisn to Celsis K-273.15

    I converted Fahrenheit to Kalvins for 90 degrees Fahrenheit = 305.2 Kalvins

    Then I divided 32psi/ 305.2 = .105psi/kalvins

    2. For the second question I first converted Fahrenheit to Kalvins -20 degrees Fahrenheit is equal to 244.3 Kalvins.

    Next I put the Kalvins of 90 degrees and -20 degrees back into the Ideal Gas Law Equation.

    32psi(244.26 K)/305.2 K = Xpsi(305.26K)/ 305.2 K
    ________________________________________________
    X= 25.6 psi

    25.6 is the pressure.

    ReplyDelete